
 Page 1

SHARE Session #9777: WebSphere and Rational
Developer Hands-on-Labs – COBOL and Web services
development using RDz

Lab Exercise (duration estimate)

Part 1: COBOL development on System z (~25 min)……………………………… Pg 2

Part 2: Generating, deploying, and testing a CICS Web service (~25 min)…………Pg 15

Introduction: About this lab

There are two exercises in this lab.

The first exercise introduces you to the RDz development environment. You will

learn how to use RDz to perform a variety of tasks, including authentication to System z,

allocation of data sets, editing of COBOL programs, etc. You will also see how RDz can

improve your programming efficiency through content assist (i.e. code assist), JCL

generation, and the editor’s Compare With feature, which lets you visually compare the

changes between versions of the same program.

The second exercise introduces you to the Web services support in RDz.

Specifically, you will learn how to use the Enterprise Service Tools of RDz to generate a

Web service from a COBOL program running on CICS 3.x, then deploy and unit-test it.

Pre-requisites

• Basic to intermediate level understanding of COBOL and System z (OS/390)

• Basic understanding of CICS Web services

Your User id for this lab is: SHARA__

Your password is: firstpw

 Page 2

Exercise 1 – COBOL development on the mainframe

In this scenario, you will connect to the mainframe, view your files, allocate a PDS, edit a

program, submit a job to compile the program, and view the job output.

Estimate completion time: 25 minutes

Overview of tasks in this exercise

1. Connect to the SHARE system

2. Explore/Browse data sets
3. Create a filter to view other data sets

4. Allocate a data set

5. Copy program into the newly allocated data set

6. Edit the COBOL program

7. Verify your changes using the Compare editor

8. Generate JCL to compile the program, then view the output

9. (Optional) Build the program

 Page 3

1. Connect to the SHARE system

• If not already done for you, launch RDz by double clicking on the desktop icon

“RDz 8.0.1”. On the Workspace Launcher dialog, select

“C:\workspace\RDzCOBOL”, and click OK.

• Once the application is loaded, you will see, in the title area, “z/OS Projects –

IBM Rational Developer for System z with Java”. This is the z/OS Projects

perspective
1
.

• On the Remote Systems view (right hand side), locate your system connection:

mvs1.centers.ihost.com, right-mouse click on it, and select Connect

1
 In Eclipse, views (or windows) are organized and laid out as a unit known as Perspective. A Perspective

is a collection of related views that helps users accomplish specific goals. Some examples of perspective

are Java, Debug, z/OS Projects, etc.

 Page 4

• Enter your assigned userid and password. Note that your userid will be assigned

to you at the lab. The userid should look something like SHARAnn, where nn is

your unique id. Your password is “firstpw”.

• Once the userid and password are entered, click OK. You should now be

authenticated to the MVS1 system

2. Explore/Browse data sets

• Expand the “+” sign in front of the connection name, and you will see five

different nodes:

i. z/OS UNIX Files

ii. z/OS UNIX Shells

iii. MVS Files

iv. TSO Commands, and

v. JES

• Expand MVS Files by clicking on the “+” sign in front of it. You will see a filter:

My Data Sets – a filter that is dynamically created when you authenticate to the

system.

 Page 5

• Expand My Data Sets (SHARAnn.*), and you should see all the data sets under

your high level qualifier SHARAnn.*

• Expand the various data sets to explore the members and files in the different data

sets. (Note: Please do not delete anything unless explicitly instructed to)

3. Create filters to view data sets

 Create a new filter to view another student’s (e.g. SHARA30) data sets

• Right-click on MVS Files, select New > Filter…

• Under Filter string, enter SHARA30.* Click Next

• Under Filter name: enter a name for this filter. For example, SHARA30 data

sets. Click Finish.

 Page 6

• Expand the newly created filter on the Remote Systems view. You should

now be able to see the data sets under the id: SHARA30. (Note that if you are

RACF-authorized, you will have the ability to edit the data sets and members)

4. Allocate a data set

You can allocate a data set using the characteristics of an existing data set. In this

example, allocate a new COBOL data set using the characteristics of

SHARAnn.S1112.COBOL. Name the new data set

“SHARAnn.S1112.WORKING.COBOL”, where SHARAnn is your assigned userid.

 Page 7

i. On the Remote Systems view, browse to SHARAnn.S1112.COBOL.

Highlight the data set, then look at the Properties view, you will see the data

set’s characteristics:

ii. Right-click on the data set SHARAnn.S1112.COBOL, select Allocate Like…

(or press CTRL+1)

iii. Select your high level qualifier (SHARAnn) from the drop down

 Page 8

iv. Enter “S1112.WORKING.COBOL” in the text field to the right of the drop

down.

Click Next.

v. On the next screen, you should see that the “Copy characteristics from an

existing data set” has been selected. Verify that, and click Next.

vi. On the last screen of this wizard, you will see the data set characteristics of the

data set to be allocated. These values are identical to what you saw earlier on

the Properties view. You have the option to further customize these values if

you want to. For this exercise, simply click Finish. Your data set is allocated

 Page 9

5. Copy program into the newly allocated data set

• Expand SHARAnn.S1112.COBOL, highlight STOCK.cbl. Right-click on it, and

select Copy (or CTRL+C)

• Navigate to the newly allocated data set: SHARAnn.S1112.WORKING.COBOL,

right-click on it, select Paste (or CTRL+V). The COBOL program is copied into

your data set.

i. After copying the member, select Rename… (or press F2) from the context

menu, and rename the new member to STOCKnn.cbl

ii. You should now have one copy of this program in each of the two data sets:

 Page 10

6. Edit the program

• Double-click on STOCKnn.cbl. The program will be opened in the System z

LPEX editor.

• Make the following changes:

i. Update program-id to STOCKnn (use your unique id in place of nn)

ii. On Line 41: 01 EXH-QOT-DAT-RECS REDEFINES COMPANY-

STOCK-INFO is incorrect. Modify it to redefine the correct data definition,

as in:

01 EXH-QOT-DAT-RECS REDEFINES EXH-QOT-DATA.

iii. Under the Procedure Division section, locate line 95, MOVE CUR-REQ-

SYM TO RPY-SYMBOL, then insert this new line below it (press

CTRL+ENTER, or enter “I” in the Prefix area, to add a new line after the

existing one):

MOVE FUNCTION CURRENT-DATE TO RPY-TIME

Try to use Content Assist in your coding.

iv. Finally, on the last line of the program, change it to

END PROGRAM ‘STOCKnn’. (use your unique id in place of nn)

• Save the changes by pressing “CTRL+S”

• Close the program.

TIP: To maximize the edit window, you can double-click on the title tab of the edit

session. To restore the original layout, simply double-click on the title again.

TIP1: You can type the line number directly into the command line area of

the editor to jump to the line.

TIP2: Content Assist is a feature that helps you complete your declaration,

variables, etc. To invoke, simply press CTRL+SPACE. For example, in

the above, you can first delete the wrong reference, and when the cursor is

at the text insertion point, press CTRL+SPACE to see a list of available

references. Make sure to end the line with a period ‘.’

 Page 11

7. Verify your changes using the Compare editor

• Go back to the Remote Systems view.

• While pressing down the CTRL key, use the mouse to highlight both

STOCKnn.cbl and STOCKSOL.cbl (the latter is the “solution” for this exercise,

and is found inside the SHAREnn.S1112.COBOL data set).

• With both highlighted, right-mouse click and select Compare With > Each

Other. The Compare editor allows you to see the differences between the two

files line by line. Verify that the only differences you see are the program IDs.

(If you see an error message complaining about incompatible record length, just

ignore it and proceed.)

• When you’re done, close the editor by clicking on the “x” in the title of the editor

window.

 Page 12

8. Generate JCL to compile the program, and view the output

i. On the Remote Systems view, right-click on the STOCKnn.cbl program,

select Property Group > Associate Property Group…. On the pop up

dialog, select the checkbox for “S1112RDz Property Group”. Click OK. RDz

will use the build definitions defined in S1112RDz Property Group to generate

the JCL. (If interested, you can go to the Property Group Manager view to

open this property group in the editor, so that you can inspect its definition).

ii. Right-click on the STOCKnn.cbl program, select Generate JCL > For

Compile. On the pop up, verify that the job name is “SHARAnn1”, and the

JCL Data Set name is: “SHARAnn.S1112.GENERTED.JCL”. The latter is

where the JCL will be generated to. Click OK.

When asked if you want to submit the generated JCL, select Submit.

• If the submission is successful, you will see a pop-up dialog, showing you the

id for this job. Remember this ID.

• On the Remote Systems view, locate the JES node, expand it to see My Jobs,

then right-click on it, select Show in Table. The Remote System Details

view will come into focus. Locate the job you have just submitted.

• Under the User return code column, you will see the job status of your job.

To see the job output, double click on the job. The job output will be shown in

the editor window. (Hint, you can reorganize the columns in the table. To do

so, you can simply drag and drop a column to the position of your choice.

 Page 13

9. (Optional) Building the COBOL program

To build the program you have just written, you will use the z/OS Projects capability.

Follow the steps below:

i. Go to the z/OS Projects view (on the left hand side of the z/OS Projects perspective),

right-click on the blank space, select New > z/OS Project….

ii. Enter a name for the project, such as “myProject”.

iii. Under the Subproject groupbox below, select to “Create an MVS subproject”. Click

Finish.

iv. Enter a name for the subproject, for example, “SandboxBuild”.

v. Also on this page, select the property group “Sandbox Build” to associate to this

subproject. This property group contains the build definition you will need to build

this subproject. Click Finish.

vi. You will now see the project on the z/OS Projects view.

vii. Now, return to the Remote Systems view, highlight your program “STOCKnn.CBL”,

right-click and then select “Add to subproject…” (Hint: you can also drag and drop

this file into the subproject to add it)

viii. On the pop-up, select your subproject as the copy destination. Your project should

look like this:

 Page 14

ix. Take a look at the property group definition before initiating the build. Navigate to the

Property Group Manager view

Double-click on “Sandbox Build” to open it in the editor. You can view its various

attributes such as its name, selected categories, and the properties used in each of the

categories such as COBOL options, the different PROCs used, Link options, etc.

When you are finished, close the edit session.

(Shortcut: - You can right-mouse click on your MVS subproject, select Property

Group > Edit Associated Property Group to bring up the edit session)

x. Right-click on the subproject “SandboxBuild”, and select “Rebuild subproject”:

xi. This will generate the JCL and submit a job to build the program. When it is finished,

you should see the load module built inside your project:

 Page 15

Exercise 2 – Generating, deploying, and testing a CICS COBOL
Web service

In this exercise, you will transform an existing COBOL application to a Web service

provider using the Enterprise Service Tools feature of RDz. Specifically, you will

generate a Web service for a COBOL application that allows external clients to pass in

the stock symbol of a company, and retrieves the stock quote of that company. To

simplify things, some sample stock quotes have been hard-coded into the program so that

we can easily test the program without database access.

Once the Web service is generated, you will deploy it to a CICS 3.1 runtime (note that

CICS 3.2 and CICS 4.1 are also supported), and then test it to verify it works.

Estimate completion time: 25 minutes

Overview of tasks in this exercise

1. Open the Enterprise Service Tools

2. Create a Web service for CICS project

3. Generate Web service artifacts.

4. Deploy the Web service to CICS

5. Verify the Web service installation

6. Test the Web service

 Page 16

(Note) If not already done so, authenticate to the SHARE system using the Remote

Systems view (see Pg 3-4)

1. Open the Enterprise Service Tools perspective

• Select Window > Open Perspective > Others > Enterprise Service Tools

• Select Window > Preferences. Highlight Connections on the left hand side

navigation menu. This is the CICS Explorer connection page. Currently, there

is a connection defined for the region “CICSS01D” (via Port: 9387). On this page,

click on the link “Credentials” to update the User ID and password with yours.

When you’re finished. Click OK.

• On the lower right hand corner of the EST perspective, verify that the CICS

Explorer connection is active:

2. Create a Web services for CICS project

• On the EST Project Explorer view, right-mouse click on the blank space, select

New > Web Services for CICS Project. This will bring up the project wizard.

 Page 17

• For project name, enter “STOCKnnProject”

• Under Options, verify the following options are selected:

a. Development scenario: Create New Service Interface (bottom-up)

b. Application mode: Service Provider

c. Conversion type: Interpretive XML Conversion

 Click Next.

• On the Import source files page, select the Remote... button to import the source

from the mvs1 system.

• Browse to select file. First, expand “mvs1.centers.ihost.com – MVS Files”, then

expand “My Data Sets”. Navigate to SHARAnn.S1112.COBOL, and select

STOCKSOL.cbl. Click OK.

• When asked whether to check dependencies, select “Import the selected source

only” since this program doesn’t have any external dependencies. Click OK.

(Note: If the other option is selected, and if there are external copybooks that this

program is dependent on, you will see these identified, and have a chance to

import them to the project as well)

• Click Finish. Your project is created, and the Web Services for CICS wizard is

launched.

 Page 18

3. Generate Web service

You will generate a Web service for a COBOL application that allows external

program clients to query the stock quote of a company. The external application will

pass in the stock symbol, and your Web service will return the stock quote using the

CICS Web Services support. To simplify the lab, the load module for this COBOL

program: STOCKSOL is already built, and is currently running in the CICS region

CICSS01D.

• On the first page of the wizard, you are asked to specify the Request and the

Response language structures to generate Web service from. Under the Request

Language Structure tab, expand STOCK-QUOTE-QUERY and select the

checkbox for REQ-SYMBOL as the input.

• On the same page, click on the Response Language Structure tab, expand

COMPANY-STOCK-INFO. This data structure contains the information you

want to return to the requesting client.

 Page 19

Select the checkboxes for RPY-SYMBOL and RPY-SHARE-PRICE.

Click Next.

• Specify the Application Properties and the Service Properties.

o Under the Application Properties tab, ensure that the program name

is STOCKSOL – this is the name of the load module running in the

CICS region

o Click on the Service Properties tab, and specify the following for

service location:

http://mvs1.centers.ihost.com:9387/cics/services/SHARAnn. This

location information entered will be written to the WSDL and

WSBIND files that will be generated from this wizard.

o Click Next.

 Page 20

• For the interpretive XML conversion, both a WSDL file
2
 and a wsbind file

3

will be generated.

o Under the Service Artifacts tab, rename the WSBIND file name to

STOCKnn. This is needed to avoid name conflicts since all the

students are deploying their wsbind files to the same pickup directory.

o For the WSDL file, you can just accept the default name. You will

later use this to test your Web service.

o When you are ready, click Next.

2
 WSDL stands for Web Services Description Language. In EST Web Services for CICS project, the

WSDL file describes the service such as the mapping between the operations and the language structures of

the COBOL application.
3
 The wsbind file is used at runtime to convert between the SOAP body and the language structures.

 Page 21

• The last page of this wizard is the “CICS Deployment Options” page. On

this page:

o Select the checkbox for “Copy the wsbind file to the selected pickup

directory”. This will enable the wizard to copy the generated wsbind

file to the pickup directory upon successful generation.

o Select the checkbox for “Generate deployment manifest file”. You will

use this manifest file to install this Web service shortly.

o For the Target CICS region, you will see the region “CICSS01D” and

the available pickup directories. Highlight the pickup directory

“shareuser/stevenm/wspickupprovider” – this is where the

generated wsbind file will be copied to. Also note that this pickup

directory corresponds to the pipeline called “RDZPIPEL”

o Click Finish.

• The Web services artifacts are generated and you will find them under the

Targets folder of your project.

 Page 22

4. Deploying the Web service on to CICS

• Examine your project. You will notice that the generated artifacts are stored

in the Targets folder. In addition, you will also see a Deployment folder.

Expand the folder, locate the manifest file “STOCKSOL.admr”, double-click

to open it.

• The manifest file “STOCKSOL.admr” is opened in the Manifest editor. You

will use the editor to install the Web service using the information contained

in this manifest.

• Review the manifest file. You should see that the RDZPIPEL pipeline

resource is listed. To install the Web service you have just generated, you will

need to refresh this pipeline so that CICS is aware of the newly copied wsbind

file. Scroll down to the Installation section of the editor, click Install

Definitions. This will cause the selected pipeline (RDZPIPEL) to be

refreshed.

• On the Console view below, you should see a confirmation message that the

scan action was performed successfully.

• Click on the “x” on the editor tab to close this edit session.

• Your Web service is installed.

 Page 23

5. Verifying the Web service using CICS Explorer

• Open the CICS SM perspective (Window > Open Perspective > Other…,

then select CICS SM)

• On the CICSplex Explorer view, highlight CICSS01D.

• If not already opened, bring up the Web Services view (From the menu,

select Operations > Web Services)

• You should see the Web service you have just installed, and the pickup

directory where it was installed under.

6. Testing the Web service using Web Services Explorer

• Return to the Enterprise Service Tools perspective. Locate the WSDL file

“STOCKnn.WSDL” inside the Targets folders of your project. Right-click

on the WSDL file, select Web Services > Test with Web Services Explorer.

• Double-click on the title bar of the Explorer to maximize the window.

• Once the Web Services Explorer comes up, click on the hyperlink

“STOCKSOLOperation”. This will bring up the screen “Invoke a WSDL

Operation”

• In the entry field under req symbol, enter a stock symbol such as “IBM”, or

“INTC”, or “MSFT” (case sensitive, and without quotes). Press Go.

• Under the Status panel below, you should see the stock quote, along with the

request symbol, returned.

---- This is the end of the lab ----

 Page 24

Appendix

About the technology

Eclipse, an open source project, provides a sophisticated, extendable, integrated

development environment (IDE) for writing Java applications. With the exception of its

team support, which enables groups of users to work with a code repository such as CVS,

Eclipse operates as a single user IDE in which all work is performed in a workspace on

your local hard drive.

Many commercial products have been built to extend the base Eclipse capabilities.

IBM Rational Developer for System z provides access to the mainframe and lets you

manipulate artifacts that reside on the mainframe with a modern, intuitive, and familiar

user interface. It “includes capabilities that can help make traditional mainframe

development, Web development, and integrated service-oriented architecture (SOA)-

based composite development fast and efficient. COBOL, PL/I, C, C++, High-Level

Assembler, and Java™ developer communities can also be more productive when they

take advantage of these functions. IBM Rational Developer for System z integrates with

and extends the IBM Rational Software Delivery Platform (SDP).
4

Reference

Title Location

IBM Rational Developer for System z http://www-306.ibm.com/software/awdtools/rdz/

RDz articles/infos on

developerWorks

http://www.ibm.com/developerworks/rational/products/rdz/

RDz product feature demos http://publib.boulder.ibm.com/infocenter/ieduasst/rtnv1r0/i

ndex.jsp

RDz online forum http://www.ibm.com/developerworks/forums/forum.jspa?f

orumID=1131

COBOL cafe http://www-

949.ibm.com/software/rational/cafe/community/cobol

4
 http://www-306.ibm.com/software/awdtools/rdz/

